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ABSTEACT

The forces cn a slender body cf revclution
heveriny under waves are determinca. It is assumecd
in the analysis that tnz wavalangth is of the same
order of magnituce as the bedv radius, i.e. kP=0(l) ,
where k 1is the vave numb2r and ¥ 1is tns bodv
radius. Two cas2s ars consiceredu: bzam seas anv head
seas. It is shown that fcr heod szas cenventional
slender body theory is inadz-uate, and, for this case,

a peneralization of slender body theory is cevzlceped.
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LIST OF PHYSICAL SYMBOLS ii.

wave amplitude

sﬁectrum of random sea

wave p;Bpagation speed ( = w/k)

empirical constant in Neumann spectrum (232,8 ftZ/sec®)
acceleration due to gravity (32,2 ft/sec?)

depth of Sody centerline from undisturbed waterline
wave number (= 032/3)

body length

pressure

body radius

body cross~sectional area (=T R?)

time

body velocities

wind speed

surge force

inertial cylindrical coordinates

inertial cartesian coordinates - see Figure 1
vertical force

angle between body axis and wave crests
wavelength s (2% /k)

. body displacements

water density
velocity potential

wave frequency




1.

FORCES ON A HOVERING SLENDER 30DY OF -REVOLUTION
SUBMERGED UNDER WAVES OF MODERATE WAVELENGTH

I. INTRODUCTION

When a slender submerged body is hovering in a velocity
field caused by a sinusoidal wave train of large wavelength, tﬁe
forces on the body can be calculated using conventional slender
body theory. Such a calculation has been performed, for example,
by Kaplan and Hu {1]. In this approach the orbital velocity
potential associated with the undisturbed waves is expanded in -
the neighborhood of the body, in which case the problem reduces
to solving a two-dimensional potential problem in the cross flow,
and the force per unit length can be determined in terms of the
added mass of the section., An implicit assumption which is made
in conventional slender body theory is that the longitudinal
variations are small in comparison with the lateral variations.
It is clear that for a long slender body in long waves this as-
sumption is satisfactory except, perhaps, locally near a blunt
end or at the bcginning of an appendage. Local aberrations can-
not, of course, affect the total force to any great extent.

A different situation prevails when the wavelength is
of the same order of magnitude as the dimensions of the cross-
section and the waves are not beam-on. In this case, longitudi-
nal variations become of the same order of magnitude as lateral

variations and it is necessary, in calculating the body potential,




to take this into account. A similar situation would prevail if
one were to .calculate the flow about a slender corrugated body
with no waves if the wavelength of the corrupations were of the
same order as the cross-gectional dimensions.

In the present report we will deal with the case of a
slender body of fovolution, and we will consistently make the
assumption that the wavelength is of the same order of magnitude
as the body radius, i.e. kR = 0(1) , in which case, since the
body is slender, k€ » 1 . wWe will then seek tiic leading term
in the expression for the force consistent with tnis ordering
hypothesis. In the course of the analysis, body motions will be
included., However, these motions are assumed to be wave-induced,
and, as a consequence, their ocscillatory part will be &t most of
the order of the wave orbital motions; in other words, an upper
bound on the oscillatory part of the body motion is given by the
motion of a particle. This fact will aid us in simplifying the
expressions that are obtained. Two cases will be considered: beam
seas and head seas.

The velocity potential of the waves with wavelength N

amplitude a , and wave propagation speed c¢ is given by:
) - 4' b
g =aceh k2l [xeospryanp-ci) W

where k s 2;4& s glc2 and the real part is to be taken. The
coordinates (x,y,z) are fixed with respect to an inertial systenm,
with 2 pointing upward and x directed along the axis of the
undistuébed body. The angle h iz the angle between the x axis

fre



3.

and the wave crests (see Figure 1l.). In tefnn of a coordinate

system fixed with respect to the body, the wave potential becomes

¢ = ace-kh e«{z«-éd{(x*f)cos\l+(;/+"1)Aiﬂf>-cf]} (@)

where ( j y M .4; ) represent the (x,y,z) components of the
body displacements. Their time rates of change will be denoted

by (u,v,w),
II. BEAM SEAS

For beam seas 3 = /2 and Equation (2) reduces to

- k{258 iy m)-atl} .

{ = o e
O ¢

There is no x variation in the wave potential for beam scas,

and consequently none in the wave orbital velocities, Furthermore,
the x ccmponent of orbital velocity is zero. Because of this,
the longitudinal variations are indeed small compared with the
lateral variations, and, if the body is slender, it is permissable
to use conventional slender body theory. The body potential,
therefore, satisfies the two dimensional Laplace equation in the

cross flow. Let us transform to polar coordinates in the cross

flow:

y 2trcos §

(%)
z = rsin o

The body potential can be determined by using the circle theorem

(2]). The wave potential plus body potential satisfies the condi-
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tion of no normal flow on the circle r s R y and is given by

-k(h-g -r }iu@)

. mk(r#ue 0'1-6*8
-k(h-£o§ sind)

'gu" f‘ = ACe

+ ace

cnk(Beowe +q-t) (5

where the real part has been taliox}. To this must be added the
potential induced by the body motions v and w (see Figure 1.).
The complete potential is thus given by

g = cu.e-k(h-£-r‘h °) cos k(rcon @ +7-ct)

-k(h-g-l‘.gno)w‘k (‘3-‘“*‘ )

+ ace

\ §
+-Y-lcose + -"&sano ' (6)

The radial and circumferential velocities evaluated at
the body (r = R) are:

ol D -k(h-.;-ﬁ‘m‘)
Ve"kl'}%'“‘““ Cos[O-k‘Rme -kapkct]
- Vein ® +Wcoso : &)
v.-""%!-- Yoo @ twW sine® ' (8)

The time rate of change of the velocity potential evaluated on
the body is given by

_.f. 2 acke +(h-d-R one ,[ (v-c)dnk(ﬂme +«,-d'.)

tweosk (Reo@tn-ct)]. (9)

Here the terms proportional to Vv and ¥ have been dgnored,
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These ignorcd terms give rise to standard added mass terms in the
force which Qan be a&dod in at the end of the analysis.
. The pressure on the body is obtained from the (two-
dimensional) Bernoulli equation in nioving coordinates:
1.12-VH-NII-L[(11)‘+(M)‘] (10)
§ It 3x YV 2 '\7 9} Y
Transforming to polar coordinates with the aid of Equation (%),
it is found that |

. )y . o
4;— s%{.-v(%i cos O --'F% smo)-w(}?& NG +-:_- -ﬁ-é coso)

":'E ((%{')t* (JF’%?SY] | (11)

However, we will consistently ignore squares of the body motions,

)
and since g{- is of the order of the body motions according to

Equation (8), the pressure simplifies to

-E'-%-I--\-(Vsino-uwsm-'-z-f-- (7';%-2)1 . (12)

|
(4 rie 2
The vertical (heaving) force per unit length is given .

by

v
. . .

Equations (7-8) must be substituted into Fquation (12)
and, thence, into Equation (13). L In so doing, all quadratic terms
in the body motions are to be ignored, In calculating the term

'(-‘-”—-i- t  which in Equation (12), it will b
z r ‘}9 lpp‘l;‘l n qult on » tw e NECessary

to square Equation (1); ‘md in so doing the term cpc"(o ‘kle-RT*kcﬁ)

_ will appear. The double angle formula




C'osz( )--‘z-_ E\*’Cosl( )] (14) !

mugst be used, and the higher harmonic term will be ignored. The
heaving force per unit length is then given by

“k{(h-§) ¢ wRsin® -\ .
4z . 2ackgRe ¢ [(v-c)ge"?srssinﬁ (Roos® +'1-c'-)sm & 09
o X °

r .
W genmecosk(ﬁws@ M’l-c{) $in @ o\&]

[

i
T2 o,ckg'Re°k(h' g)[w S'ek“l MOl e Los 6 cos[® kRcos & - khl +ket) do

[ ]
L
kRsine O\
'vgvs'mls e cos(e-kﬁcose -khl *-kCT)G-G] i
-] v

., k(e ia
+ qckg.ke-kLh~£) [M_ke (- €) Seﬂn‘ ° Sin® 29

¥ kDsin @
+2w$c.ose sin@ e c.os(e-klcose~k~l+k4‘.)als

T

L
kRsin@ , N
- ZVS-siﬂ"G e Ccs(e-klcoso -k»»l‘ka;)a@] (15)
?

There are five different integrals ir Equation (15) and

each of them is determined in the Appendix. The final result is

% -»2.5 Sk‘c‘[ko."c.zk ih\S) .I'é%{':‘l + ae-k(h- S)Sink{r:t- r\l)] (16)
where I  is a modified Bessel function of the first kind.

The first term in this equation is a suction force. It
is of second order in wave amplitude, and attenuates twice as

rapidly with depth h as the second term which is oscillatory.

Nevertheless, for certain operations it is important to retain




7,

the suction force because it persistently acts upward and tends
to make the body rise, Notice that explicit dependence on the
body velocities '(v,w) has disappeared. The result still de-
pends on body motions, however, through the displacements (1)44 )e
A, An Alternative Derivation

The derivation of the heaving force given above is per-
fectly straightforward. we will now present an alternative deri-
vation from a different point of view which is actually a prologue
to the derivation of the heaving force for a body in a random sea.

Consider the body displacements " 3 4 and the body
velocities v,w . From the equations of motion of the body we
can expect that the body motions will consist of a drifting motion
which varies slowly with time and which is due, primarily, to the
suction force, plus an oscillatory motion which varies rapidly
with time and which is aue, primarily, to the oscillatory force.

Hence, let

- i
.

A U
£'£:*£‘

(* 1o~ v (17)
We Woe w'

N =

where the quantities with subscript zero denote the drifting motions,

and the primed quantities denote the rapidly oscillating motions.

The velocity potential and pressure can be similarly separated,

1
o

(f.‘.;

J

(18)

_— -~
-
‘- L s 'Y

<‘)‘

2]




If the relations between all quantities were linear then we could
state unequivocally that the oscillating input caused the oscillat-
ing output and the drifting input caused the drifting output,
However, Bernoulli's equation for the pressure is quadratic with
respect to the velocity potential, and even the potential itself,
Equation (6), involves the body motions (m,.; ) in a nonlinear
way. It is clear, therefore, that the drifting part of the input
can affect the oscillatory part of the output and vice versa.

Substituting Equations (17,18) into Equation (6) there is obtained

v -k ('h".;o"g - ryin 9) ’
Qo+ §= ace cosk (Feos® 4 v,bm 'L ot)

-k ‘:'n-‘; 5 -;_smg
+ace )c.osn /R o8O 48,y 'act)

L =1
f')h- 0@ + N?W')ls'ne
+ (v 2 (Hor ') &= 53 (19)
Similarly substituting into Bernoulli's equation, Equation (12),
there is obtained
' Voo Ny ‘ " 10 1
—I(?,-l-?') = 5Tt T‘\L 4‘[(\/01'1')5"‘9 ‘(Vo"'N)CO‘;G][ ,-:{.— * ;D-;-

$
plRGERERE RG] e

e =

We will retain terms which may be of the order of the wave ampli-
tude squared and ignore higher order terms. In so doing, we will
assume that the oscillatory motions are, at most, of the order of
the wave amplitude . This is a reasonable assumption in view of
the fact that the motions are solely wave-induced. Thus in Equa-
tion (19), we expand the exponential and trigonometric terms

/
treating ,5 and ' as small quantities, and retain only linear
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terms in the expansion,

ck(h-L -rsine)
5 f a.c.i k(h=dy-re Gcask(rwse-;-%‘o-cf}

ekl k(- £ -rsing )

-k ,‘\l e-K (h-¢,-rsine)

v
-K h';.' B— s\ e)
e ( " cosk(—-wsS* **Cﬂ

s kl'e -k (he ;o ~5m6\ (~~Cose+* .m}k

e v) B cofas +(w, +w'\ R gino

cook _fos® %-"Io-ci)

Sink '\:rcoss * Mo -a‘f)

(21)

Now average Equation (21) over one period and denote the averag-
ing with a bar. Clearly, the average of any primed quantity is
zero, Drifting quantities will be assumed to be almost constant
over one period and, therefore, unaffected by the averaging pro-

cess. They are said to sift through the averaging integral.

- h-s.- ino)
k( " {S cosk (reos @ +4~ct) - nsmk(rwse +~'¢-ct)~g

<k (h-4, - ~sm9){

for acke

‘tacke I4 usk(&cosa-wq ~t) - '*] sin KL"F cos® “‘")o“t)}

1
+ V,P:-coss rw.g-sine (22)

Subtracting Equation (22) from Equation (21) we obtain the follow- .
ing equation for Y' :
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- -g- in )
‘f‘=O.C{ k(h-5,-rsine

cos k(recose + "o -ct)

+ k!, G-k(h'.-; rSmG) osk (reosm + Yo -ct) ‘

h-d ~reing) ,
-U‘e'k( »mrel nec:osk’\rcosew[,-c.ﬂ
-k(h-;”r%ine)

‘ 1]
-k$e sink(.rcosswg,-cﬂ
~k(\n frsms)
‘(5‘ nk(,fcosswu -c't)
kh- 5~ gine)d
+e P es kk&cossu =t

'k(,"‘ \g. —
<+ k! SW‘@) i L (* S & +1‘A-Ct)

k_{ -k(H L _smo) k\?’“ Coa @ +° -cﬂ
, -k(h'-{ &Slﬂs)

- k«'e "‘k(ic°53+“]o Cﬂ
1
i -k(h-.;.-g-ﬁns
+ '“\'@- )Dmk (— €058 +m, -c’:)%
' R R\.
+ Vv rc.ose +w-—smo (23)

The first and sixth term in the bracket must be retained
but all other terms can be ignored since they give rise only to

higher harmonics. 4#hence,

-k(ln _4'1‘51.1 &)

|
g= a'c’i Cos K\rcoss n -cf)i-

'k(h !- ~s~ne)

te osk(&mss—'yct)}

2 . (2%)
)
+v %—coss +w’3';~$in9

To determine the mean pressure, average Equation (20)

over one period.
|—-P. .1& +(V¢ SIN@ - w,coe G)lr-l&-

j bt '\“e_‘__ .-
"“(V's'ino -N"'*ss)l-g-x'- (25)
£ Oy
S
-- * -—— ——Lv ]
[ e) r‘(’) ®
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The tern %%;L'can be obtained from Equation (22)x In pefform-
ing the differentiation, it will be assumed that AL, y C» .;,
filter out of the averaging. liowever, since the first four terms
are a}ready of second order in the wave amplitude, and since i.
and~¢£ are wave.induced, any terms which arise from the filter-
ing of ﬁ, and JQ will be of higher order and can be ignored.
Terus which arise from the filtering of ¢ , on the other hand ,

must be retained.
-k h. !.‘fsi e w! . . .
2’;& - o.c‘k‘e ( n ){,‘ sink (rcos s +n‘°_d)’ 'V‘C%K(PCC'SG ’% et )‘&
t !

k(=4 - ri
tacie rene) E$‘mk (R Fos®#c) o °°°k("c°"9 G -} 28

The terms proportional to ‘.'o and 1:10 have been ignored, consist-
ent with our policy of not considering added mass terms,

Ignoring terms of the order of the body motion squared,

the mean pressure becomes

) D ‘
-ér-?. = (v'sing ~w'cos-8) L %3- - —;— -'-'3 (—%3;-) t -'.}}-:S—' (21)

To obtain p subtract Equation (27) from Equation (20).
If all terms of second order in the body motion and all higher |

harmonics are ignored, there is obtained
|

?? -%—{‘— t (Ve 5in-6 ~Wo cos e)‘—li (%2 \ (28)

when substituting 4)0 into Equation (28) it is permiss-

ible to ignore the first four terms in Equation (22) because they
give rise to terms of higher order in the pressure. Then, upon

evaluating at the body, Equation (28) simplifies to
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S e

(_L?’) 33 +2 (v sine -w.cose)——ll—
R
R (29)

Upon substituting Equations (24,26) into Equation (27), letting
r s R and integrating with respect to % according to Equation
(13), the mean vertical force per unit length becomes after high-

er order terms are ignored:

7. -k(a- &) T (26R)

+2g Sc‘mk’ikm.m i S'sink (ct-4.) - y'cosk(ct- ”l')‘l (30)

The fluctuating vertical force per unit length is obtained by in-
tegrating Equation (29) with respect to §- , and there is obtained:

-4_2'_ - 235“‘5‘&3"‘ (h- go) Cin k (ct, ‘1.3 (3L)
dx

It can easily be seen that Equation (31) is identical to the
second term of Equation (16) with 'V,, and 3. replacing ﬂ'l and
4 respectively. The firet term of Equation (30) is the same
as the first term of Equation (16) with .(. replacing $ .« The
second and third terms of Equation (30) are implicit in Equation
(16) also, for if we let M = Mo + "]’ and S = ge*!' and
then expand Equation (16) retaining terms of the order of the
square of the Vwavo amplitude, the second and third terms of Equa-
tion (30) are reproduced uonticaily once higher harmonics are
ignored. The oscillatory force given by Equation (31) is identi-
cal with the result which would have been obtained if the long
wave approximation were made at the outset of the analysis (see

€1)). It can be shown that all other first order forces and
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moments are, likewise, identical to their long wave limits in
bean uu.. .
If the oscillatory part of the motion is such that the
body moves like a water particle (which is very nearly the case),
then

g e msin ke (et-n0)

o\l' s a.e.-k (h'g.) oS k(c‘t "‘\1,)

(32)

Substituting into Equation (30), there is obtained the following

expression for the mean suction force per unit length g

42. Iate t <2k (h- ;)[I (‘Lk?.) ']
kR

The universal function d‘,(kl)‘[r.(lm)/kn .'|] is
tabulated in Table I.

-zfs (33)

IT.A. RANDOM SEAS

- Suppose the wave potential, as given by Equation (1)
for a sinusoidal wave train, is replaced by a function of a ran-
dom variable with spectrum At(w) . Using the formulation of
Pierson (4], the complete potential, Equation (6), is replaced by .

k(h-L~rsin ~k(e 5= K sin
¢ = gi k(h-$-rsino) sk(rcoso-u'-cﬂ tce lr sine) k(ﬁaosoul

v (3n)
..c,t)} A\('Q)iu + —_— 'R —C05O + "’} sn @
Now assume that all quantitiu can be written in the form
C )s( ) e ) (25)

#*This result has been obtained indcpendontlf by Ogilvie {3].
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where the subscript zero represents the mean value, and is a slow-
ly varying function of time. Quantities with a prime are fluctuat-
ing random quantities with zero mean. The similarity between this
notation and the notation used in the preceding section will be
noted,

Continuing the parallel with the preceding section, we

will operate on the potential and the pressure with the average:

G - (36)

T 2T ==

This average replaces the average over one period which
was used in the preceding .scction. By the limit T-»o° we mean
that T 1is large enough so that a meaningful sample of any randon
qu.ant:lty is included, but small enough so that mean quantities are
essentially constant over this time interval. ‘nms..qumtit:lcs
with subscript zero will filter through the operation represented
by Equation (36), just as they did for the average over one period
in the periodic case. The analysis is identical in every respect
fo the analysis performed for periodic fluctuations, provided omly
that ve interpret the bar to be the statistical average repraesent-
ed by Equation (36). |

Suppose the fluctuating part of the motion to be such
that the body follows a water particle. Then the equation corre-
sponding to Equation (33) is

“3 Al -lk(h‘.gt) I.(lkk) _ ;
%}. - zgsgk cAw)e [—-————kk |] deo (37
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The fluctuating force per unit length is

k(n-£ (_“_'
dz A k(h- )Smk(‘dt'“]") AY i) dco (38)

If the wave spectrum is a Neumann spectrum for a fully developed

sea (Reference [4])
e T

A () = -i e (39)

%
Theny letting c= “’/k s k® % » Equaticn (37) becones

s "35“.' e*v[‘;%t;-&’i‘u-z.)][ LOR) Mao

If the waves are long with respect to the body radius, then
Y
I'('Ik’k)ﬂa'«v |+ %& » and the ¢> integral can be evaluated

evactly, The intcgmtcd force can then be evaluated to be

7,38 oS Fp + ] N ()

where I, is the volumetric polar moment of inertia. If the waves
ars not long, but the body is deeply submerged [k-§°> V:/“g],
the @ integrel can be evaluated approximately by the method of
steepest descents [S]. The result is |

v ‘ 'S v '
E)ew 40T/ gsm[i é.?l;E) - ;]ou

t -
% v 1 w.g, (42)

£, =

where the integral is taken over the length of the body.

He ?
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III. HEAD SEAS
For head seas ‘3 = 0 , and Equation (2) reduces to
~ akh k{2 Sei[x+ §-ct]
g =ace e (43)

There is an explicit x variation in the wave potential for head
seas, but no y variation. Consequently, there are x varia-
tions in the orbital velocities, but the y-component of orbital
velocity is zero. The wavelength of the orbital velocity will

be assumed to be of the same order as a cross-sectional dimension,
i.e. kR = 0(1) , and, as a consequence, conventional slender

body theory is not applicable, For convenience, let
X = x+ §5-ct (44)

and transform to polar coordinates according to Equaﬂm (4).

The wave potential then becomes:

'y _‘M‘-k(u-gwkz Jkrsing (45

Expanding the wave potential as a Fourier series in O , there
is obtained

foe m~l-(h-§)*”‘z [I,(k.-)ﬂ.ZT T (kekeasn(o-3%)] (46)

where I is a modified Bessel function of the first kind.
The body potential must satisfy the three dimensional
Laplace equation. In cylindrical coordinates, this potential can

be expressed in terms of line sources and higher order line singu-

n A  oon B nv . o
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larities, as follows:

e
[ ‘ 00
f. (x.’f )dxl + Z r”cos h(e ‘k)‘(
) : (4

0 P.,Cx.,"l')dx. ir
By [(x-x.\‘*’ rs]%

[(x-x)" r"]m‘/‘ (47)

The potential _f; will be used to cancel the normal flow at the
body, r = R(x') o It is, likewise, necessary to add another
potential, S,,. ’ to. account for the body motions. However, the
body motions induce velocities which are slowly varying in the x
direction, and, consequently, an ordinary slender body representa-
tion will be adequate for this potential. In other words, the

potential m is also represented by an equation of the form
of (47), but we may take the limit r=>-0 without regard to the

rapidity of the variation of f with respect to x, . This
linit yields (ses Reference [61):

| - < {znéﬂ Rh)(:osn (e-%) |
$u= =5 f.(tar s g ¥ 2 o )

where
e

%(;d- % Sf».(dszn (x-x,) In 2 |x=sl dx, , (%9)

The expression for f, can also be sinplificd by taking the limit
r- 0 , but, because this potential must cancel the wave orbital
velocities, the strength of the 'singuhvitiu will vary rapidly

with x, . Henos, let

£.Cx, ) !Xl ,t) | (50)

where F_ 18 a slowly varying function of x; . Equation (47)
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becomes ¢

¢ tk x | 'd.
.Fo("\)e. r GDSH (9_ ) Fn (-"l)e 'M
Xb i .’f [ X-’l)‘ﬁ rl]‘&' Z 1 o L(_X-X. +r ]n % (51)

We must now take the limit k<o , which expresses the fact that
the wavelength is small compared with the body length, i.e. kL 9 1.
According to a lemma of Riemann-Lebesque, Reference [7], integrals
of the form found in Equation (51) will vanish as k-»90¢ , pro-
vided the non-oscillatory part of the integrand has bounded varia-
tion. Howcvo.r, if we sinultaneously take the limit r-+»0 , it
is clear that all the integrands will become singular in the
neighborhood of x, = x , lence, only that part of the integrand
in the immediate vicinity of the singularity will contribute to
the integral. We may, therefore, evaluate F,(x,) at x, = x
and bring F, outside the integral sign. rurthomoi'e, we nay
let the limits of integration citcnd from x, = - W to x, s +w
since the results of so doing will contribute a negligible amount
to the value of the integral by virtue of the Riemann-Lebesque
lemma, In accordance with these concepts, Bquation (51) becomes
.kx. ) : ks
$p = 'F,u)f r(x-x:::- ST Zr"rn(x)usn(e )gﬂx- ‘)d':‘,]..x (52)
The inumh can be expressed in terms of modified Bessel func-

tions of the second kidd, with the result that

(x) l"‘( ) Ka (kr)c.om(o %) (53)
r(rn\-/‘)

gb-zEcm}‘“ Ko(kr)i-zh_'z o
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In the neighborhood of the body, the quantity (kr) which ap-
pears as the argument of the Bessel functions, is postulated to
be of order unity, and; as a consequence, Equation (53) cannot
be simplified any further. The complete potential is given as

the sum |
g f" I ZERR S (54)

where expressions for fw ’ ’fm and fb are given by Equations
(46 ,48 ,54) respectively.

The boundary condition for a three-~dimensional body of
revolution, including the body motions surge, heave, and pitch,
has been derived by Cuthbert and Kerr in Reference (3]):

[us Rgeon(0-%)+ 0] 5 = o g ces(0- %)+ i) roR (69
where the subscripts x,r denote partial dori.vat:lvei. By com=
paring the second term on the left with the first term on the
right, it is clear that the second term on the hft can be neglect-
ed for a slender body, and the boundary condition then simplifies

to

[w+ ] % ‘("‘"{/x) cos(0- %)+ 1. ) ™R (56)

Differentiating Equations (u6 ’“..s” with respect to x and r ,
and substituting into Equation (56), there is obtained
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kch-!)ﬁkz[l (kl)-l-lz.I (.kR)c.osn(O-/)]

(X)r(,h)c:osn(e- A
rR" r(ni-/)

{u.+acu\<e

i1 PN J """w ?n
-5 g.(,x\&YR-v%Cx)HTZ

00

b AR 0]

)

= (w-q)ees(6-%; )nm;a - Dvik [T, (‘&)ﬂZI '(Reoxn (0-%)]

g l-F 2 Boneliedeon lo-3s)
! ‘ [(net)

Tkx
) v _ O s (x ) - )k (klﬂ
Y lkE(x)e“‘ K, (kR)+2k ¥ Z_ B N(F'-(:oi - go 2 (57)

Consider the terms corresponding to n = 0

{u.+ acike B “‘I( R\--F (x)MZ+3(,)+ 1k.(kR)—- (Fe ik
....k "‘G\ .5)*0“1 I O‘n)_z .‘(.R) + lkE eu\u k. (kR) (58)

dR
) dx

We equate the non-oscillatory parts:
' o(3) '
{w—-‘iﬁ‘.(x\ ink*%'(x\k %‘%—- -- -‘;_‘&% (59)
To the first order in body radius we obtain |
g,(x) 3 - z‘k% w o . - (60)

We now equate the oscillatory parts:

L - OWE T ()l (R )
'k(h"g)“kzI (k'RszEe_“"k:(kR) (613

akace

et e e s PN A S S
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If kR s 0(1) , then, to the first order in body rgdiul we ‘Ob~
e £y+ikX
~k(h-5)*+i
ke = oce (h-2TM 1 (e
T - : (62)
2K, (kR)

Now consider the non-oscillatory terms corresponding to n = 1 .

To the first order in body radius we obtain

F.. Riw (63)

finally, consider the oscillatory terms corresponding to n > 1 .

To the first order in body radius we obtain

- F9)
eikx Ex) =~ ace K(h-2)u XI T, (R (ne §)

W (3" K, (X))
Substituting back into the potential, we obtain after some com-
bining and simplifying

(su)

- a0t 3)+¢22 ) wa(w Lk T (m in (-E)
+uR hrﬂx(x)i-——cos(o- 2) (e5)
where sm . -2“1;(R(V)R(x\san(x-n.)ﬂaz\x-z.l dx, »end
€"~| ne0
=2 n)o

The partial derivatives of qﬁ with respsct to », & , x
and t evaluated at the body r = R , are given respectively by

}4 -u%—wcos(e-k) (66)

qr

oy W A
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‘-}L-.E'-?ﬁe'kh*ikx z nsnn (6-%) ~wsin(9-3

Y nNe kX D K. (kR) €7)
. k(-5 +kX o L
D¢ __ acie Eocnn(o-%) wos (RK)LJL (68)
R L

= -é'-;' (V:'w) cos ((9-%) + ‘t'(—")
K(h-O)+ikd & £, cosn(0-%)
A - e KLOR)

(69)

where the Wronskian identity,

I, (MK (kR)- K (KR)I. (kk)a- T (70)

has been employed (see Reference [$1). 1In addition, higher order
terms in body radius have been dropped in the expression for _.i. R
and terms which contribute to the added mass force have been ig-
nored in the expression for %L

The pressure on the body is obtained fro- the (three-
dimensional) Bernoulli equation in moving coordinates. Expressed
in terms of cylindriocal coordinates this is o '

%‘qt _(w_av,)(%é.sin o+ -%_- -?r;—coce)
| -(w+~ro'si"9)%{‘ “';7.'[_"-'%% 1"'(%%) + (%i-)] ()

But ;}% is of the order of the body motions a_caording to Equa-
tion (66), and we will consistently ignore squares of the body
motions. Henos the pnnuu simplifies to

I..?.L.(w-o' - %-;-cosa-(wwo‘;ne)—"L 2

€ N T")]

The vertical forces per un:l.t hn;th 1: given by Equation (13).
After taking the real part, Bquatima (67-69) must be substituted
into Equation (72) and thenocs into Equatiom (13). In so doing,
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all quadratic terss in the body motions are to be ignored, and

the orthogonal propirti« of the trigonometric terms in 6 may
be used, If, at the same time; we ignore higher ordcv terms in

body radius, we are finally led to the fouowing oxpuuicn for

the heaving force per unit length: . jx.
42 Fealed Y § ! ninel) .]
dx R Z K (WK, (kR) L (R
+ ?.rsa.c(w-q[x)e k(4. X . 1Tgac‘¢'k(h°5)nrn kX | q
K! (k) , k!(kR) (13)

In arriving ht,tquticn (73) it has been assumsd that the surge
velocity u is of the same order of magnitude as the heaving
velocity w , in which case the specific dependence of the verti-
cal foroe on u is negligible for a slender body. .

Equation (73) can be simplified even further by taking
into account the order of magnitude of the body motions (which

are wvave induced), and also by focusing attention on the total
foros instead of the force per unit length. | |

: Cmidor tlu body motions, and let each motion be Tepre-
sented by a clcnl.y vu-ying part plus a upidly eocnhting part,
in the same manner as for the beam sea case. .For head seas, the
oscillating part of the motion will certainly be smaller than the
motion of a water particls and so the oscillatory dio'ﬁhoomu h
given by Equation (32) represent upper bounds. An upper bound
on the cscillatory velocities will then be | '

a'\:i}s —acke ~k(h- 5-)‘““ (ct- 7’) v o o
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The drifting velocities w which are wave-induced are

o * Y
clearly much smaller than the wave speed ¢ , and hence the
drifting terms which appear in the cos kx term of Equation
(73) are negligible compared with the entire sin kX tersm.
Upon estimating the oscillatory velocities with the aid of
Equation (74), we obtain an upper bound for the coe kx tera

of Equation (73)

3rga‘c‘l<e:2k(h'5')c—°$‘* ¥ cosk (et = )

K' (kR)
which is seen to be of the same order of magnitude as the first
term of Equation (73), i.e. 0(Q ac'k) « On the basis of

this argument, we must retain the cos k X term. However, the

(75)

total force is the integral over the length of the body. Inte-
grating the first term of Equation (73) over the length of the
body, it is seen that this term is 0( f'a'c'k £ ) , vwhere the
ordering hypothesis kR = 0(1) has been utilized. On the other
hand, integrating Bqu'ation (78) over the length of the body,
there is obtained
cosk (x4 g-c‘t\ dx

K' (kR)

According to the Riemann-Lebesque lemma (Reference [71), as

Ay [3 o ;‘kg-Zk (h- ;.)‘”k (ct- ,“) g‘ (76)

K =s00 the integral is 0(1/k) . Hence, the cos kX tera is,
in effect, 0( Q ac) . The ratio of this tera to the first
term of Equation (73) is 0(1/Kk£ ) which may be neglected. For
a closed body 1/K.’ (kR) vanishes at the end points of the inte-
gralgy,and, in this case, if the body radius has a continuous first
derivative, it can be shown, by an integration by parts, that the
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ratio of the cos ka' term to the first term of Equation (73)
actually vanishes as (1/k£ )2 , A similar argument can be i
used to show that the oscillatory parts of ¥ and f may be
neglected in the exponentials of the remaining terms. Hence,

the total heaving force becomes

L= gack {ake' 2k(h-50) gsu)a,(kl)ix +2 Jk(h';') YS(x)d (kR) sin k (x4 5,-ct)dx

(77)
where
‘ | & | [ n(nH! r
*,(kl)‘ﬁz‘ K'“(HZ)K‘M,(W\)L (kk)‘ ¥ ] (78)
&, (kR) = ' (79)

A Y K ' (kR)
and the integrations extend over the length of the body. The

universal functions O, and J, are tabulated in Tadble I.
The result for head seas may be contrasted with that
for beam seas. In the beam sea case the ocscillatory body motions

contribute terms of the same order of magnitude as the suction

force on a stationary body, and, furthermore, the body motions
tend to reduce the suction force by reducing the relative motion
of body to vatir: In tr;; hoq.d sea case, the body motions are not
necessarily in phase with the water motion, and hence do not
necessarily reduce the suction force. But, in any event, the
effect of the body motions is of higher order, and may be neglect-
ed. Because of the relief afforded the suction force in the beam

. s e



sea case, we may expect the suction force to be smaller in beam

seas than in head seas.

In the long wave limit the ordering hypothesis is
KR &1 , k¢ = 0(1) . The analysis has been carried out by
Cuthbert and Kerr [8] for long waves, and they demonstrate that |
the effect of body motions is present in the force per unit
length for head seas as it is in the present analysis. However,

{f in the long wave analysis we take the limit k-+oc0o and

assume that body motions are bounded in accordance with Equation
(74), the effect of body motions on the integrated force in head
seas is negligible. If in the present analysis we let KR-—0

then d, > 1.8 y6,~ -1 and Equation (77) reduces to the long
wave solution for k o0 .

The pitching momsnt can easily be odbtained by introduc-
ing an x into the integrand in Equation (77). The lateral force

and yawing moment are, of course, zero for head seas.

In a similar fashion, and neglecting terms of the order
of the square of the ﬁvo amplitude, we can derive the following

expression for the surge force

_-)'(: -— gac}kte-k(k_ 5 gS(x\ﬁ; (kk\cwk (x+ §. ~ct) dx (80)
vhere R d By
-2 | ¥
o, (kR) o g K@) ()

°
The universal function ,(kR) is tabulated in Table I. In the "

long wave limit O\, —> 1 , and Equation (80) reduces to the
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correct long vave solution (see Referencs [1)).
IXII.A. RANDOM SEAS

Arguments similar to that used for beam seas lead to
the following expressions for the steady suction force in head

seas wvhen the waves are described by a spectrum At ()

i3 e_—!*(h~$.) g (82)

Z, - SS A(w) de S(.x)c\,(kk\d.x

The fluctuating force is

z% 2¢ jv Al docke " (-4 fSa)ck, (kR)sink (= §,-t)dx

(83)

The fluctuating surge force is
o

X . SH AM(w)de c"\:‘e.’l' 0"-;’) gscx)o\ _‘(kl)c.os\( (x- -t )dx

¢ 1))

Using a Neumann spectrum (Equation (39)), the steady suction foroce

becomes
O e L

Fer long waves o\ » 1.5 and the <> integral can be evaluated ex-
actly '

:/1 C,v ‘4' (.h'go) o
Zo" %’-({) %1." € L / (Votume) (88)
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For the deeply submerged case, the method of steepest descents
yields

2 ?\2:(%)3/,,_?_%:_,‘:-4 h(h-!.) vy gs(.)q.(%:- [—;—;) dy (8..”




Tables of the functions

kR
0.0
0.1
0.2
0.3
0.4
0.5

0.7
0.8
0.9
1.0
l.1
1.2

ok (kR)
0.00000
0.00501
0.02013
0.04568
0.08216
0.13032

0.19113
0.26585

0.35601
0.46352
0.59064
0.7%009
0.91810

TABLE I.
of (i) = I.k(kzkk) -0
R ik ‘?jﬁéFQ'
) (i) "i33'2;; K (eR).K,, (kR)
|
uém)'kWK:wn
kR
ot, (0 = 75 5 i:n
d,(kR) % (kR) QA (kR)
1.5000 -1.00000 1.000
1.5035 -0.990M4% 1,009
1.5211 -0.97532 1.026
1.5569 -0.96124 11,050
1.6127 -0.95051 1,080
1.6899 -0.9%400 .15
1.7900 -0.94197 1.154
1.9151 -0.9%442 1.198
2.0676 - -0,95125 1.247
2.2506 -0.96234 1.300
2,4680 -0.97758 1.358
2.7202  =0.99689 1.822
3.0254  =1,0202% 1,490
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FIGURE 1, BODY IN REGULAR OBLIQUE WAVES
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APPENDIX

In Equation (15) a number of definite integrals must be
evaluated. We will show how these integrals can be obtained.

Consider the integral

2kRsin @
é sin 0. ¢ " de (A1)

If the substitution @ = o\ ¢+ “'/z is made, the integral can

be reduced to

¥
2kRcosah

2 gcosae. do.

0
which, according to formula (%) on p. 181 of Reference (6], is

29 I‘ (2‘&) (A2)
Consider the integral

~3> e Cosi® ~kReos@ - ky+ ketJaine wio de (A3)

If the substitution © s d' + ¥ /2 is made, the integral can

be reduced to
h

cosk(ci'-«\\ ye,m““sin l:d +kRein o\] gin 2o da

[}
By using the product into sum formula for trigonometric functions
this can be expanded into

v T '
—;-Cosk (dﬂl) {Se‘&w CosE‘Rs?no‘ -e\]&t - fe—kﬁas« cos LRsinwL 3&] do\}

0 °

g
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In order to evaluate these two intagrals, consider the following

identity (see Reference (8)).

v T

T(_i_“_t’__)/z Jp[(x‘-y‘)y‘] - gey"’“cos(xs:ns-w)cl«

x=)
Ist y-»x , and we obtain

T
ge’““tc.os(xsa.‘f-v’c)dt =Fx’ 2o
° = 0 y< o

(AW)

By applying Equation (A4), it is seen, finally, that the integral

presented in Equation (A3) reduces to
l{— kR cosk (C.*‘ "L\

Similarly, the integral
o

gamgn’ﬁ"tQ Cos[e ~-kRcos® -‘ul +ko‘t] de

[}
can be shown to be

- -‘{—\:R sink (t -"D

Also the u‘x.",-
(v-c) S e&kdn ..Sin k (Rcos-e +~l-cﬂ sne 4O

4 kRsin@

“W fe cosk (Reos @ h ct) sine de

can, similarly, be shown to be

T kR [(«r-c) sink (c{“ '/L\ + weosk (c‘f - '1)]

(AS)

(A6)

(A7)

(AS)

(A9)




